Recent Advances on Methods and Applications of Nonlinear Differential Equations
View this Special IssueResearch Article  Open Access
Majid Tavassoli Kajani, Adem Kılıçman, Mohammad Maleki, "The Rational ThirdKind Chebyshev Pseudospectral Method for the Solution of the ThomasFermi Equation over Infinite Interval", Mathematical Problems in Engineering, vol. 2013, Article ID 537810, 6 pages, 2013. https://doi.org/10.1155/2013/537810
The Rational ThirdKind Chebyshev Pseudospectral Method for the Solution of the ThomasFermi Equation over Infinite Interval
Abstract
We propose a pseudospectral method for solving the ThomasFermi equation which is a nonlinear ordinary differential equation on semiinfinite interval. This approach is based on the rational thirdkind Chebyshev pseudospectral method that is indeed a combination of Tau and collocation methods. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.
1. Introduction
Many science and engineering problems of current interest are set in unbounded domains. We can apply different spectral methods that are used to solve problems in semiinfinite domains. The first approach is using the Laguerre polynomials [1–4]. The second approach is replacing semiinfinite domain with interval by choosing , sufficiently large. This method is named domain truncation [5]. The third approach is reformulating original problem in semiinfinite domain to singular problem in bounded domain by variable transformation and then using the Jacobi polynomials to approximate the resulting singular problem [6]. The fourth approach of spectral method is based on rational orthogonal functions. Boyd [7] defined a new spectral basis, named the rational Chebyshev functions on the semiinfinite interval, by mapping to the Chebyshev polynomials. Guo et al. [8] introduced a new set of the rational Legendre functions which are mutually orthogonal in . They applied a spectral scheme using the rational Legendre functions for solving the Kortewegde Vries equation on the half line. Boyd et al. [9] applied pseudospectral methods on a semiinfinite interval and compared the rational Chebyshev, Laguerre, and mapped Fouriersine methods.
The authors of [10–12] applied spectral method to solve nonlinear ordinary differential equations on semiinfinite intervals. Their approach was based on a rational Tau method. They obtained the operational matrices of the derivative and the product of the rational Chebyshev and Legendre functions and then they applied these matrices together with the Tau method to reduce the solution of these problems to the solution of system of algebraic equations. Furthermore, the authors of [13, 14] introduced the rational second and thirdkind ChebyshevTau method for solving the LaneEmden equation and Volterra’s population model as nonlinear differential equations over infinite interval.
One of the most important nonlinear singular ordinary differential equations that occurs in semiinfinite interval is the ThomasFermi equation, which is given as follows [15, 16]: which appears in the problem of determining the effective nuclear charge in heavy atoms. Boundary conditions for this equation are given as follows: The ThomasFermi equation is useful for calculating the form factors and for obtaining effective potentials which can be used as initial trial potentials in selfconsistent field calculations. The problem has been solved by different techniques. [17–19] used perturbative approach to determine analytic solutions for The studies in ThomasFermi equation. Bender et al. [17] replaced the righthand side of a this equation by one which contains the parameter , that is, ; the potential is then expanded in a power series in as follows: This procedure reduced (1) into a set of linear equations with associated boundary conditions. Laurenzi [19] applied perturbative method by combining it with an alternate choice of the nonlinear term of (1) to produce a rapidly converging analytic solution. Cedillo [18] wrote (1) in terms of density, and then the expansion was employed to obtain an absolute converging series of equations. Adomian [20] applied the decomposition method for solving the ThomasFermi equation, and then Wazwaz [21] proposed a nonperturbative approximate solution to this equation by using the modified decomposition method in a direct manner without any need for a perturbative expansion or restrictive assumptions. He combined the series obtained with the Padé approximation which provided a promising tool to handle problems on an unbounded domain. Liao [22] solved the ThomasFermi equation by the homotopy analysis method. This method provided a convenient way to control the convergence of approximation series and adjusted convergence regions when necessary, which was a fundamental qualitative difference in analysis between the homotopy analysis method and all other reported analytic techniques. Khan and Xu [23] used the homotopy analysis method (HAM) with a new and better transformation which improved the results in comparison with Liao’s work. In [24], the quasilinearization approach was applied for solving (1). This method approximated the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the linear ones, and, unlike perturbation theories it is not based on the existence of some kind of a small parameter. Ramos [25] presented two piecewise quasilinearization methods for the numerical solution of (1). Both methods were based on the piecewise linearization of ordinary differential equations. The first method (C1linearization) provided global smooth solutions, whereas the second one (C0linearization) provided continuous solutions. Recently, Boyd [26] solved the ThomasFermi equation using the rational firstkind Chebyshev collocation method with very high accuracy. He showed that the singularity of the ThomasFermi function at the origin, which would otherwise degrade convergence of the rational Chebyshev series to fourth order, can be eliminated by a simple transformation of the coordinate and the unknown coefficients to reach a convergence slightly larger than that of the tenth order.
In this paper, we introduce the rational thirdkind Chebyshev (RTC) functions, and, for the first time, we derive the operational matrix of the derivatives of RTC functions. We then introduce a combination of Tau and pseudospectral methods based on RTC functions to illustrate its efficiency in solving differential equations on a semiinfinite interval. The proposed method requires the definition of RTC functions, the operational matrix of the derivative, and the rational thirdkind ChebyshevGauss collocation points and weights. The application of the method to the ThomasFermi equation leads to a nonlinear algebraic system. High accurate results for are obtained with moderate number of collocation points. We employ this method to the ThomasFermi equation because, first, this equation is nonlinear singular, second, the proposed method is easy to apply and numerically achieve spectral convergence, and, because of singularity in this equation, this method can handle this problem, third, the limit of the RTC functions at infinity is computable, and thus the boundary conditions at infinity can be easily handled.
This paper is arranged as follows. In Section 2, we describe the formulation and some properties of the rational thirdkind Chebyshev functions required for our subsequent development. Section 3 summarizes the application of this method for solving the ThomasFermi equation, and a comparison is made with existing methods in the literature. The results show preference of this method in comparison with the others. The conclusions are described in the final section.
2. Properties of RTC Functions
In this section, we present some properties of the rational thirdkind Chebyshev functions and introduce the rational thirdkind Chebyshev pseudospectral approach.
2.1. RTC Functions
The thirdkind Chebyshev polynomials are orthogonal in the interval with respect to the weight function and we find that satisfies the recurrence relation The RTC functions are defined by Thus, RTC functions satisfy
2.2. Function Approximation
Let denote a nonnegative, integrable, realvalued function over the interval . We define where is the norm induced by the scalar product Thus, denote a system which is mutually orthogonal under (10), that is, where is the Kronecker delta function. This system is complete in ; as a result, any function can be expanded as follows: with
The ’s are the expansion coefficients associated with the family . If the infinite series in (12) is truncated, then it can be written as where
Moreover, from recurrence relation in (7), we have
2.3. Operational Matrix of Derivative
The derivative of the vector defined in (14) can be approximated by where is the operational matrix for the derivative. Differentiating (7), we get By using (18), the matrix can be calculated. The matrix is a lower Hessenberg matrix and can be expressed as , where is a tridiagonal matrix which is obtained from and the matrix is obtained from
2.4. RTC Collocation Points and Weights
Theorem 1. Consider the interpolatory quadrature formula If nodes zeros of the thdegree Chebyshev polynomial of the third kind and the corresponding weights are given by then for all .
Proof (see [29]). Abramowitz and Stegun [30] introduced the rational thirdkind ChebyshevGauss points. Let
be the thirdkind ChebyshevGauss points; thus, we define
which are named the rational thirdkind ChebyshevGauss nodes. Boyd [31] offered guidelines for optimizing the map parameter . The relations between the rational thirdkind Chebyshev orthogonal systems and the rational thirdkind Gauss integration are given as follows:
3. Numerical Solution of the ThomasFermi Equation
In this phase, at first, we rewrite the ThomasFermi equation introduced in (1) and (2) as By applying (14) and (17) on (26), we define As in a typical Tau method and using (10), we can write
Now, a pseudospectral method is defined by applying (25) on (28) to generate algebraic equations as follows: In addition, using (14)–(16), the boundary conditions in (26) can be approximated as
Solving the system of nonlinear equations in (29) and (30) using Newton’s method for the unknown coefficients and substituting the obtained results in (14) and (17), the values of and can be approximated.
The importance of the initial slope is that it plays a major role in determining the energy of a neutral atom in the ThomasFermi approximation where is the nuclear charge.
The initial slope of the ThomasFermi equation is calculated by Kobayashi et al. [32] as . Boyd [26] obtained , correct to 25 decimal places; however, he obtained this accuracy with and . In fact, he overcame the singularity of the problem by a change of variable and, increasing . The proposed method in this paper has the ability that it provides high accurate values for by moderate number of collocation points and by obtaining suitable mapping parameter . This method overcame the singularity by employing the Tau method and, obtaining suitable . As Boyd stated, the constant is a userchoosable map parameter, which sets the length scale of the mapping. Although there are sophisticated ways to estimate the best choice of [31], in practice, it is usual to begin with an according to the physical properties of the problem, and then experiment. The criterion for optimum is rate of convergence. In general, there is no way to avoid a small amount of trial and error in choosing when solving problems on an infinite domain. Note that our experiments show that (i) for obtaining accurate results for using the present method optimum is less than 1 and (ii) the number of decimal places of and the number of correct values of are almost the same. The reason that such a value of provides high accurate initial slope is that it essentially moves collocation points associated with large values of to the left. Because the exact solution changes slowly when is large, this leftward movement of the collocation points is beneficial since more collocation points are situated where the solution is changing most rapidly. For this particular reason, very accurate approximations of are obtained with moderate number of collocation points. We point out that the scheme of Boyd [26] is based on collocation, and for approximating it needs very large number of collocation points and a large value for , while our scheme is based on the Tau method and the ChebyshevGauss quadrature that needs few collocation points and small .
The approximations of computed by the present method and their relative errors are shown in Table 1. Obviously, this method is convergent by increasing the number of points and obtaining suitable . The comparison of the initial slope calculated by the present paper with values obtained by Liao [22], Khan and Xu [23], and Yao [27] is given in Table 2, which shows that the present solution is highly accurate. Table 3 shows the approximations of obtained by the method proposed in this paper for and and those obtained by Khan and Xu [23] and Liao [28]. Figure 1 shows the resulting graph of the ThomasFermi equation for which tends to zero as increases by the boundary condition .


4. Conclusion
The fundamental goal of this paper has been to construct an approximation to the solution of the nonlinear ThomasFermi equation in a semiinfinite interval which has singularity at and whose boundary condition occurs in infinity. In the above discussion, the pseudospectral method with RTC functions, which have the property of orthogonality, is employed to achieve this goal. Advantages of this method are that we do not reform the problem to a finite domain and that with a small very accurate results are obtained. There is a good agreement between the obtained results, and exact values which demonstrates the validity of the present method for this type of problems and gives the method a wider applicability. Comparing the computed results by this method with the others shows that this method provides more accurate and numerically stable solutions than those obtained by other methods.
Acknowledgments
The authors express their sincere thanks to the referees for their comments on the earlier version of this paper and their helpful suggestions. The second author also gratefully acknowledges that this paper was partially supported by the Universiti Putra Malaysia under the ERGS Grant Scheme having Project no. 5527068.
References
 B.Y. Guo and J. Shen, “LaguerreGalerkin method for nonlinear partial differential equations on a semiinfinite interval,” Numerische Mathematik, vol. 86, no. 4, pp. 635–654, 2000. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 H. I. Siyyam, “Laguerre tau methods for solving higherorder ordinary differential equations,” Journal of Computational Analysis and Applications, vol. 3, no. 2, pp. 173–182, 2001. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 J. Shen, “Stable and efficient spectral methods in unbounded domains using Laguerre functions,” SIAM Journal on Numerical Analysis, vol. 38, no. 4, pp. 1113–1133, 2000. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 Y. Maday, B. PernaudThomas, and H. Vandeven, “Shockfitting techniques for solving hyperbolicproblems with spectral methods,” Recherche Aerospatiale, vol. 6, pp. 1–9, 1985. View at: Google Scholar
 J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, Mineola, NY, USA, 2nd edition, 2001. View at: MathSciNet
 B.Y. Guo, “Jacobi spectral approximations to differential equations on the half line,” Journal of Computational Mathematics, vol. 18, no. 1, pp. 95–112, 2000. View at: Google Scholar  Zentralblatt MATH  MathSciNet
 J. P. Boyd, “Orthogonal rational functions on a semiinfinite interval,” Journal of Computational Physics, vol. 70, no. 1, pp. 63–88, 1987. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 B.Y. Guo, J. Shen, and Z.Q. Wang, “A rational approximation and its applications to differential equations on the half line,” Journal of Scientific Computing, vol. 15, no. 2, pp. 117–147, 2000. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 J. P. Boyd, C. Rangan, and P. H. Bucksbaum, “Pseudospectral methods on a semiinfinite interval with application to the hydrogen atom: a comparison of the mapped Fouriersine method with Laguerre series and rational Chebyshev expansions,” Journal of Computational Physics, vol. 188, no. 1, pp. 56–74, 2003. View at: Publisher Site  Google Scholar
 K. Parand and M. Razzaghi, “Rational legendre approximation for solving some physical problems on semiinfinite intervals,” Physica Scripta, vol. 69, no. 5, pp. 353–357, 2004. View at: Publisher Site  Google Scholar
 K. Parand and M. Razzaghi, “Rational Chebyshev tau method for solving higherorder ordinary differential equations,” International Journal of Computer Mathematics, vol. 81, no. 1, pp. 73–80, 2004. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 K. Parand and M. Razzaghi, “Rational Chebyshev tau method for solving Volterra's population model,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 893–900, 2004. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 M. Tavassoli Kajani and F. Ghasemi Tabatabaei, “Rational Chebyshev approximations for solving LaneEmde equation of index m,” in Proceeding of the International Conference on Computationaland Applied Mathematics, pp. 840–844, Bangkok, Thailand, March 2011. View at: Google Scholar
 M. Dadkhah Tirani, F. Ghasemi Tabatabaei, and M. Tavassoli Kajani, “Rational second (third) kind Chebyshev approximations for solving Volterras population model,” in Proceeding of the International Conference on Computational and Applied Mathematics, pp. 835–839, Bangkok, Thailand, March 2011. View at: Google Scholar
 H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, NY, USA, 1962. View at: MathSciNet
 S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, New York, NY, USA, 1957. View at: MathSciNet
 C. M. Bender, K. A. Milton, S. S. Pinsky, and L. M. Simmons, Jr., “A new perturbative approach to nonlinear problems,” Journal of Mathematical Physics, vol. 30, no. 7, pp. 1447–1455, 1989. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 A. Cedillo, “A perturbative approach to the ThomasFermi equation in terms of the density,” Journal of Mathematical Physics, vol. 34, no. 7, pp. 2713–2717, 1993. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 B. J. Laurenzi, “An analytic solution to the ThomasFermi equation,” Journal of Mathematical Physics, vol. 31, no. 10, pp. 2535–2537, 1990. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 G. Adomian, “Solution of the ThomasFermi equation,” Applied Mathematics Letters, vol. 11, no. 3, pp. 131–133, 1998. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 A.M. Wazwaz, “The modified decomposition method and Padé approximants for solving the ThomasFermi equation,” Applied Mathematics and Computation, vol. 105, no. 1, pp. 11–19, 1999. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 S. Liao, “An explicit analytic solution to the ThomasFermi equation,” Applied Mathematics and Computation, vol. 144, no. 23, pp. 495–506, 2003. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 H. Khan and H. Xu, “Series solution to the ThomasFermi equation,” Physics Letters A, vol. 365, no. 12, pp. 111–115, 2007. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 V. B. Mandelzweig and F. Tabakin, “Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs,” Computer Physics Communications, vol. 141, no. 2, pp. 268–281, 2001. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 J. I. Ramos, “Piecewise quasilinearization techniques for singular boundaryvalue problems,” Computer Physics Communications, vol. 158, no. 1, pp. 12–25, 2004. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 J. P. Boyd, “Rational Chebyshev series for the ThomasFermi function: endpoint singularities and spectral methods,” Journal of Computational and Applied Mathematics, vol. 244, pp. 90–101, 2013. View at: Publisher Site  Google Scholar  MathSciNet
 B. Yao, “A series solution to the ThomasFermi equation,” Applied Mathematics and Computation, vol. 203, no. 1, pp. 396–401, 2008. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 S. Liao, Beyond Perturbation, Introduction to the Homotopy Analysis Method, vol. 2 of CRC Series: Modern Mechanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. View at: MathSciNet
 S. E. Notaris, “Interpolatory quadrature formulae with Chebyshev abscissae of the third or fourth kind,” Journal of Computational and Applied Mathematics, vol. 81, no. 1, pp. 83–99, 1997. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1972, 10th printing with corrections.
 J. P. Boyd, “The optimization of convergence for Chebyshev polynomial methods in an unbounded domain,” Journal of Computational Physics, vol. 45, no. 1, pp. 43–79, 1982. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 S. Kobayashi, T. Matsukuma, S. Nagi, and K. Umeda, “Accurate value of the initial slope of theordinary TF function,” Journal of the Physical Society of Japan, vol. 10, pp. 759–762, 1955. View at: Google Scholar
Copyright
Copyright © 2013 Majid Tavassoli Kajani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.